skip to main content


Search for: All records

Creators/Authors contains: "Chen, Yue"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Soft robots can undergo large elastic deformations and adapt to complex shapes. However, they lack the structural strength to withstand external loads due to the intrinsic compliance of fabrication materials (silicone or rubber). In this paper, we present a novel stiffness modulation approach that controls the robot’s stiffness on-demand without permanently affecting the intrinsic compliance of the elastomeric body. Inspired by concentric tube robots, this approach uses a Nitinol tube as the backbone, which can be slid in and out of the soft robot body to achieve robot pose or stiffness modulation. To validate the proposed idea, we fabricated a tendon-driven concentric tube (TDCT) soft robot and developed the model based on Cosserat rod theory. The model is validated in different scenarios by varying the joint-space tendon input and task-space external contact force. Experimental results indicate that the model is capable of estimating the shape of the TDCT soft robot with an average root-mean-square error (RMSE) of 0.90 (0.56% of total length) mm and average tip error of 1.49 (0.93% of total length) mm. Simulation studies demonstrate that the Nitinol backbone insertion can enhance the kinematic workspace and reduce the compliance of the TDCT soft robot by 57.7%. Two case studies (object manipulation and soft laparoscopic photodynamic therapy) are presented to demonstrate the potential application of the proposed design. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. Legged locomotion is a highly promising but under–researched subfield within the field of soft robotics. The compliant limbs of soft-limbed robots offer numerous benefits, including the ability to regulate impacts, tolerate falls, and navigate through tight spaces. These robots have the potential to be used for various applications, such as search and rescue, inspection, surveillance, and more. The state-of-the-art still faces many challenges, including limited degrees of freedom, a lack of diversity in gait trajectories, insufficient limb dexterity, and limited payload capabilities. To address these challenges, we develop a modular soft-limbed robot that can mimic the locomotion of pinnipeds. By using a modular design approach, we aim to create a robot that has improved degrees of freedom, gait trajectory diversity, limb dexterity, and payload capabilities. We derive a complete floating-base kinematic model of the proposed robot and use it to generate and experimentally validate a variety of locomotion gaits. Results show that the proposed robot is capable of replicating these gaits effectively. We compare the locomotion trajectories under different gait parameters against our modeling results to demonstrate the validity of our proposed gait models. 
    more » « less
    Free, publicly-accessible full text available June 28, 2024
  3. Soft robotic snakes (SRSs) have a unique combination of continuous and compliant properties that allow them to imitate the complex movements of biological snakes. Despite the previous attempts to develop SRSs, many have been limited to planar movements or use wheels to achieve locomotion, which restricts their ability to imitate the full range of biological snake movements. We propose a new design for the SRSs that is wheelless and powered by pneumatics, relying solely on spatial bending to achieve its movements. We derive a kinematic model of the proposed SRS and utilize it to achieve two snake locomotion trajectories, namely side winding and helical rolling. These movements are experimentally evaluated under different gait parameters on our SRS prototype. The results demonstrate that the SRS can successfully mimic the proposed spatial locomotion trajectories. This is a significant improvement over the previous designs, which were either limited to planar movements or relied on wheels for locomotion. The ability of the SRS to effectively mimic the complex movements of biological snakes opens up new possibilities for its use in various applications. 
    more » « less
  4. Soft robotic snakes made of compliant materials can continuously deform their bodies and, therefore, mimic the biological snakes' flexible and agile locomotion gaits better than their rigid-bodied counterparts. Without wheel support, to date, soft robotic snakes are limited to emulating planar locomotion gaits, which are derived via kinematic modeling and tested on robotic prototypes. Given that the snake locomotion results from the reaction forces due to the distributed contact between their skin and the ground, it is essential to investigate the locomotion gaits through efficient dynamic models capable of accommodating distributed contact forces. We present a complete spatial dynamic model that utilizes a floating-base kinematic model with distributed contact dynamics for a pneumatically powered soft robotic snake. We numerically evaluate the feasibility of the planar and spatial rolling gaits utilizing the proposed model and experimentally validate the corresponding locomotion gait trajectories on a soft robotic snake prototype. We qualitatively and quantitatively compare the numerical and experimental results which confirm the validity of the proposed dynamic model. 
    more » « less
  5. Soft robotics holds tremendous potential for various applications, especially in unstructured environments such as search and rescue operations. However, the lack of autonomy and teleoperability, limited capabilities, absence of gait diversity and real-time control, and onboard sensors to sense the surroundings are some of the common issues with soft-limbed robots. To overcome these limitations, we propose a spatially symmetric, topologically-stable, soft-limbed tetrahedral robot that can perform multiple locomotion gaits. We introduce a kinematic model, derive locomotion trajectories for different gaits, and design a teleoperation mechanism to enable real-time human-robot collaboration. We use the kinematic model to map teleoperation inputs and ensure smooth transitions between gaits. Additionally, we leverage the passive compliance and natural stability of the robot for toppling and obstacle navigation. Through experimental tests, we demonstrate the robot's ability to tackle various locomotion challenges, adapt to different situations, and navigate obstructed environments via teleoperation. 
    more » « less
  6. Paleostress inversion of 141 outcrop-scale faults across the eastern flank of the southern Central Range of Taiwan, where leveling and GPS data suggest a steep gradient in rock uplift rates yields two main kinematic phases of deformation. Phase 1 consists of 93 normal faults that generally dip moderately northeast, whereas phase 2 consists of 48 strike-slip faults that generally dip steeply west-northwest. Both phases record NE-trending subhorizontal extension but different orientations of principal shortening; in phase 1, the principal shortening axis is nearly vertical, whereas in phase 2, it plunges gently to moderately southeast. The northeast extension is consistent with extension directions obtained from GPS and earthquake focal mechanisms in the central part of the southern Central Range. However, these indicators of contemporary deformation also reveal more complicated states of stress along the eastern and western flanks of the range and in the deep crust southwest of the range. We interpret these more complicated stress states as reflecting the “forceful extrusion” of the southern Central Range, where the lower crust is being pinched between more rigid crustal blocks represented by the Peikang High and the Luzon Arc. In this context, the temporal progress from strike-slip to normal faulting observed in outcrops may reflect the advection of the rocks from lower to higher structural levels. The northeast extension normal faults can be interpreted as accommodating the lateral and vertical movement of the crust in the southern Central Range. Based on thermochronological data and the onset of extrusion in southwest Taiwan in the late Pleistocene, we infer that this SW extrusion process may be younger than 0.5 Ma. 
    more » « less
  7. We provide a platform to examine the effect of inclusion geometry on three-dimensional metamaterial crystals to tune frequency-dependent effective properties for control of leading order dispersive behaviour. The crystal is non-magnetic and made from all dielectric components. The design provides novel dispersive properties using subwavelength resonances controlled by the geometry of the media. We numerically calculate the effective tensors of the metamaterial to identify frequency intervals where the metamaterial exhibits band gaps as well as intervals of normal dispersion and double negative dispersion. The frequency intervals can be explicitly controlled by adjusting the geometry and placement of the dielectric inclusions within the period cell of the crystal. 
    more » « less